Mad families, P+(I)-ideals and ideal convergence

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mad families, splitting families and large continuum

Let κ < λ be regular uncountable cardinals. Using a finite support iteration of ccc posets we obtain the consistency of b = a = κ < s = λ. If μ is a measurable cardinal and μ < κ < λ, then using similar techniques we obtain the consistency of b = κ < a = s = λ.

متن کامل

Very Mad Families

The notion of very mad family is a strengthening of the notion of mad family of functions. Here we show existence of very mad families in different contexts.

متن کامل

Mad Families and Their Neighbors

We study several sorts of maximal almost disjoint families, both on a countable set and on uncountable, regular cardinals. We relate the associated cardinal invariants with bounding and dominating numbers and also with the uniformity of the meager ideal and some of its generalizations. 1. Who Are These Families? A Background Check Almost disjoint (ad) families have been a topic of interest in s...

متن کامل

MAD families and the rationals

Rational numbers are used to classify maximal almost disjoint (MAD) families of subsets of the integers. Combinatorial characterization of indestructibility of MAD families by the likes of Cohen, Miller and Sacks forcings are presented. Using these it is shown that Sacks indestructible MAD family exists in ZFC and that b = c implies that there is a Cohen indestructible MAD family. It follows th...

متن کامل

Co-analytic mad families and definable wellorders

We show that the existence of a Π 1 -definable mad family is consistent with the existence of a ∆3-definable well-order of the reals and b = c = א3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2020

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil2009099y